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Problem 1

1a

For LTE, we use the Saha equation for hydrogen:

np

nH

≈ 2

(

2πmekBT

h2

)3/2

e−χ/kBT , (1)

where nH is the density of neutral hydrogen and np is the density of free protons. Using nH

= n − np and setting the right-hand side of the equation to α(T ), we have

n2
p

n − np

≈ α(T ). (2)

This can be solved using the quadratic equation by rearranging to

n2
p + αnp − αn = 0. (3)

Solving for np and dividing by n gives us the ionization fraction:

xHII = −
α

2n
+

1

2n

√
α2 + 4αn (4)

(the quadratic also gives us a solution with a negative sign between the two terms, but we

know xHII must be a positive number, so we can ignore it). Plugging in numbers gives
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xHII = 8.19 × 10−5. (5)

The optical depth is the density of electrons multiplied by the scale height and the electron-

scattering cross-section:

τes = xHIInσTH = 5.44 × 10−5. (6)

1b

To get the free-free optical depth, use the free-free absorption coefficient and multiply by a

characteristic scale height, H = 100 km.

τff = αff∆x ≈ αffH, (7)

where we have α from lecture:

αff = 3.7 × 108Z2 neni

T 1/2ν3
(1 − e−hν/kBT )gff . (8)

ni = ne = xHIIn, we take gff ≈ 1, and Z = 1 for hydrogen. ν = c/λ0. This gives

τff = 3.7 × 108 x2
HIIn

2

T 1/2ν3
(1 − e−hν/kBT ) = 1.54 × 10−5. (9)

1c

We have the bound-free cross-section from the notes,

σbf ≈ 6 × 10−18 n

Z2

(

ν

νi

)

−3

, (10)

where ν is still c/λ0 and νi is the frequency required for ionization:

νi =
Z2Ry

hn2
≈ 3.29 × 1015Z2

n2
Hz. (11)

2



Ry is one Rydberg = 13.6 eV. Note that in these two equations, n is the energy level of the

atom. If ν < νi, the photons do not have enough energy to ionize the hydrogen, and the

cross-section is zero. ν = 6 × 1014 Hz. For n = [1, 2, 3], νi = [3.29, 0.82, 0.37] × 1015 Hz ,

so τ = 0 for atoms in n = 1 and n = 2 levels, but for n = 3 we have to use the formula.

However, we first need to calculate the fraction of neutral atoms that will be in the n = 3

state. We use the partition function and assume that all atoms are in the ground state of

one of the first two excited states:

n3 = n

(

g3e
−E3/kBT

g1e−E1/kBT + g2e−E2/kBT + g3e−E3/kBT

)

(12)

with Ei = Ry(1− 1/n2
i ) and gi = 2n2

i . The density we get is n3 = 8.27× 10−12n, so we plug

this in for

τbf = n3σbfH = 3.03 × 10−4. (13)

1d

We can treat this case as similar to normal hydrogen ionization, except this time χ = 0.75

eV = 1.2 × 10−12 ergs. Let’s assume basically all hydrogen atoms are either neutral or are

H− ions (since the ionization fraction we found was very small) and use Saha:

nH

nH−

=
g0

g
−

2

ne

(

2πmekBT

h2

)3/2

e−χ/kBT (14)

where the ratio of the degeneracies is about 1. Substituting ne = xHIInH, we get

nH− =
n2

H−
xHII

2

(

2πmekBT

h2

)

−3/2

eχ/kBT = 4.05 × 109cm−3. (15)

Now assume the neutral hydrogen is in the ground state (as we saw, most of it is). Again

use σbf ≈ 6 × 10−18 n
Z2

(

ν
νi

)

−3

. νi = 1.8 × 1014 Hz this time, and ν = 6 × 1014 Hz, so the

cross section is nonzero. Plugging in numbers, we get
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σbf = 1.66 × 10−19cm2 −→ τ = σbfnH−H = 0.0067. (16)

This optical depth is small, but it still clearly dominates. This opacity is about two orders

of magnitude or more than each of the other sources of opacity.

Problem 2

2a

We have the cooling time for hydrogen from class:

tc = 9 × 1010T 1/2n−1
I sec. (17)

The problem says the mass of hydrogen gas is on the order of the dark matter mass, so let’s

assume M is the mass of hydrogen. This gives us nI = M
mp

3
4πR3 . Setting tc = tdyn gives the

expression

[

GM

R3

]

−1/2

≈ 9 × 1010T 1/2
v

[

4πmpR
3

3M

]

. (18)

Doing algebra and using the definition of the virial temperature to get M ∼ kBTvR/Gmp,

we find that the temperature cancels and we get the expression for Rg:

Rg ≈
3kB

4πm
3/2
p 9 × 1010

= 2.16 × 1023cm = 70.2kpc, (19)

so we indeed find that the radius is on the order of 80 kpc.

2b

Free-free emission is dependent on the amount of free electrons and protons present in the

gas. Therefore, we need to calculate the fraction of ions given a certain temperature and the

assumption of CIE (collisional ionization equilibrium):

nHICic = nHIIαAne (20)
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From this we can derive that

yII =
nII

nI

=
Cic

αAne

= 1.3 × 1015

(

k

χ

)2(
T

T4

)

e−χ/kT (21)

And we can write

xII =
nII

nH

=
nII

nI + nII

=
yII

1 + yII

(22)

These will be important when writing out the electron and proton densities in what follows.

The emmission is given by

ǫff = 1.4 × 10−27Z2nenIIT
1/2gff (23)

We have already calculated nII above. Assume that gff ≈ 1, set Z = 1 for Hydrogen, and

convert to dimensionless units. Then

Λff =
ǫ

nenH

= 1.4 × 10−25 yII

1 + yII

(

T

T4

)1/2
erg cm3

s
(24)

For bound-free emission, again the proton and electron fractions are important. The emission

is

ǫbf = 3.25 × 10−13nenikBT

(

T

T4

)

−1/2

(25)

Convert to dimensionless units. Then

Λbf =
ǫ

nenH

= 5 × 10−25 yII

1 + yII

(

T

T4

)1/2
erg cm3

s
(26)

For Lyman-α emission,

ǫLy−α ≈ hν0n2A21 = hν0n1C12 (27)

where ν0 is the frequency associated with the Lyman-α transition, A21 is the rate of transi-

tions from n = 2 → n = 1, and C12 is the rate of collisional excitation from n = 1 → n = 2.
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Using the formulae derived in class, we can rewrite C12 in the final expression to get

ǫLy−α ≈ 2.16hν0n1nef

(

hν0

kT

)

−1.68

T−3/2e−hν0/kT (28)

where f ≈ .5 is the oscillator strength of the Lyman-α transition and n1 is the fraction of

neutral Hydrogen atoms in the ground state (assmue n1 ≈ nI). Converting into dimensionless

variables, we have

ΛLy−α =
ǫ

nenH

= 4 × 10−18 yII

1 + yII

(

hν0

kT

)

−.68(
T

T4

)

−1/2
erg cm3

s
(29)

To calculate the fraction of neutral Hydrogen, write

nI

ntot

=
nI

nI + nII

=
1

1 + ynII

(30)

So putting these together,

ΛLy−α =
ǫ

nenH

= 4 × 10−18 1

1 + ynII

(

hν0

kT

)

−.68(
T

T4

)

−1/2
erg cm3

s
(31)

2c

The probability of absorption into the thermal pool is just the probability of collisional

de-excitation. We can write this as

P =
C21

C21 + A21

(32)

where A21 = 6.3 × 108s−1 (from NIST) and at T = T4, ne = 1cm−3,

C21 = 5 × 10−3s−1 (33)

Plugging these values into the above equation, we have

P =
C21

C21 + A21

≈ 10−11 (34)

So there is a very small probability that absorption into the thermal pool will take place.
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2d

We solve the following balance equations

n5C56 = n6R65 (35)

n6C67 = n7R76 (36)

noxy = n5 + n6 + n7 (37)

First divide the latter equation by n6 and invert to get

n6

noxy

=

[

n5

n6

+ 1 +
n7

n6

]

−1

(38)

Now plug in the relations from above to arrive at
n6

noxy

=

[

R65

C56

+ 1 +
C67

R76

]

−1

2e

Look at the Grotrian diagram for the OVI ion. You can see that the first excited state is a

short energy step above ground state (∆E = 12eV). From this we can confidently say that

mostly the ground and first excited states will be populated. The cooling will therefore be

dominated by the transitions n = 2 → n = 1.

For OVII, the lowest energy level transition requires a λ = 22A photon to excite the electron

to that level,, or a gas temperature of ∆E/k = 6 × 106 Kelvins. This is outside of our

temperature range, so we can neglect this temperature.

For OVIII, the lowest energy level transition requires a λ = 18A photon to excite the

electron to that level,, or a gas temperature of ∆E/k = 8 × 106 Kelvins. This is outside of

our temperature range, so we can neglect this temperature.

But a transition for OV only requires a λ = 1218A photon to excite the electron to that

level, or a gas temperature of ∆E/k = 1× 105 Kelvins. Plenty of particles will have enough

energy to impart collisionally to excite this transition.
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2f

Here we derive the cooling function for the line transition of OVII. We assume CIE again.

Start with the expression for emission:

ǫOVI = n2A21hν0 (39)

where ν0 is the frequency associated with the line transition and n2 is the number density

of particles in the excited state of OVI. Assuming collisional de-excitation is a negligible

process. Then

n2A21 = n1C12 = (nOVI − n2)C12 (40)

Rearranging:

n2 = nOVI

C12

C12 + A21

(41)

And recall from section (2d)

nOVI

noxy

=

[

R65

C56

+ 1 +
C67

R76

]

−1

(42)

Assuming solar abundances, we can make the following conversion

nOVI

noxy

=
XH,sol

Xoxy,sol

nOVI

nH

(43)

where we have defined Xoxy,sol = noxy/ntot in the sun. Thus, finally, we can write

n2 = nH

Xoxy,sol

XH,sol

[

R65

C56

+ 1 +
C67

R76

]

−1
C12

C12 + A21

(44)

Putting it all together,

ΛOVI =
ǫ

nenH

= hν0A21

Xoxy,sol

XH,sol

[

R65

C56

+ 1 +
C67

R76

]

−1
C12

C12 + A21

erg cm3

s
(45)

where

C12 ≈ 3.9 nef

[

hν0

kT

]

−1

T−3/2e−hν0/kT
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for ν0 corresponding to the line transition,

C56 = 2.7ne

[

χ56

kT

]

T−3/2e−χ56/kT

C67 = 2.7ne

[

χ67

kT

]

T−3/2e−χ67/kT

R65 = 2 × 10−13Z2(T/T4)
−1/2

for Z=7,

R76 = 2 × 10−13Z2(T/T4)
−1/2

for Z=6.

The cooling functions from section (2b) and (2f) are plotted in Fig. 1.

Figure 1: Cooling function. Courtesy of J.L. Barnes.
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